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We show the interest of nonparametric methods taking into account the boundary correction techniques for a numerical evaluation
of an approximation error between the stationary distributions of G/M/1 and M /M /1 queueing systems, when the density function
of the general arrivals law G in the G/M/1 system is unknown and defined on a bounded support. To compute this error, we use
two kinds of norms: the L, norm and the weight norm. Numerical examples based on simulation studies are presented for the two

cases of considered norms. A comparative study of the results has been provided.

1. Introduction

When modeling practical problems, one may often replace a
real system by another one which is close to it in some sense
but simpler in structure and/or components. This approxima-
tion is necessary because real systems are generally very com-
plicated, so their analysis cannot lead to analytical results or it
leads to complicated results which are not useful in practice.

To overcome the difficulties encountered in obtaining
exact and interpretable solutions for many queueing systems,
analysts use approximation methods. Use of these methods
allows approaching the characteristics of a complex model by
those of a simpler one. It is interesting in this case to measure
the resulting approximation error.

One of these approximation methods is the strong sta-
bility [1, 2]. This technique is applicable to all operations
research models which can be represented by a Markov chain.
According to this approach, we suppose that the perturbation
is small with respect to a certain operators norm (weight
norm). Such a strict condition allows us to obtain better
estimations on the characteristics of the perturbed chain, for
instance, the perturbed stationary distributions.

In this paper, we focus on the evaluation of the approxi-
mation error between the stationary distributions of G/M/1
and M/M/1 systems, when the density function of the
general arrivals law G in the G/M/1 system is unknown and

defined on a bounded support and must first be assessed by
an appropriate nonparametric method [3-6]. To determine
this error, different norms are used, namely, the L, norm
defined in [7] and the weight norm of the approximation
strong stability method [1, 2].

Moreover, as the strong stability method assumes that the
perturbation is small, then we suppose that the arrivals law of
the G/M/1 system is close to the Poisson one with parameter
A. This conducts us to consider the problem of boundary bias
correction when performing nonparametric estimation of the
unknown density of the law G, since the density function of
the exponential law is defined on the positive real line [3, 6].

On the other hand, in practice, we are often more inter-
ested in the deviation between the average characteristics
(e.g., the mean waiting time) of the ideal model and the
perturbed one than in the difference between stationary
probabilities. Indeed, in most of the cases the G/M /1 model is
used for the calculation of distributions of waiting times. We
may be able to compare the resulting distributions of waiting
times (which is the most common goal of the model) given
by solving the M/M/1 queue.

This paper is organized as follows: in Section 2, we present
the two norms under consideration. Some techniques for
the correction of boundary effects used in kernel density
estimation are discussed in Section 3. The main results of
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this work are presented in Section 4 which is devoted to
the numerical evaluation of the approximation error on the
stationary distributions of the two considered systems, by
combining between a norm (approximate method) and non-
parametric methods. Illustrative numerical examples based
on simulation results are exposed, allowing effectuating a
comparative study.

2. Different Considered Norms

2.1. L, Norm. To determine the proximity of the stationary
distributions «; and 7; of two queueing systems (G/M/1 and
M/M/1 systems, resp.), Pedrono and Hellary [7] have defined
the following metric (L, norm):

€= nl)z%x|n,- —oc,-l. 1

In our case, 7; is the stationary distribution of the M/M/1
system given by 77, = (1 — p)p’,i = 0,1,..., where p = A/y is
the traffic intensity of the M/M/1 system, A is the mean rate
of the interarrival times, and y is the mean service time. o;
is the stationary distribution of the G/M/1 system given by
o =(1- x)x', Vi > 0, where x is the unique solution (found
numerically by the fixed point method) of the system:

x = Jefyt(lfx)g (t) dt, (2)

and g represents the density function of the general distribu-
tion G.

2.2. Operators Norm of the Strong Stability Method
(Weight Norm)

2.2.1. Preliminaries and Notations. In this section, we intro-
duce some necessary notations appropriate for our case study
and recall the basic definition of the strong stability method.
For a general framework, see [1, 2].

Consider the measurable space (N, %(N)), where % (N)
is the o-algebra generated by all singletons {j}, j € N.

Let # = {u;} be the space of finite measures on B(N)
and /" = {f(j)} the space of bounded measurable functions
on N. We associate with each transition kernel P the linear

mapping (4P) = Y. j»o #;Pjk-
(Pf) (k) = ) f (i) Py 3)

>0

Introduce on . the class of norms (weight norms) of the
form

lull, = >0 () [ (4)

>0

where v is an arbitrary measurable function (not necessar-
ily finite) bounded below away from a positive constant.
This norm induces in the space ./ the norm |f[, =
supyo (f (R) /().

Let us consider B, the space of linear operators on the
space {u € M : |ul, < oo}, with norm |Q[, =
SUPyso(1/0(K)) 2. s V(IQ -
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Let o and p be two invariant measures and suppose that
these measures have finite v-norm. Then

lof ~uf < e el S Linfo 0. )

2.2.2. Strong Stability Criterion

Definition I (see [1, 2]). A Markov chain X with a transition
kernel P and an invariant measure 7 is said to be v-strongly
stable with respect to the norm || - ||, defined in (4), if | P, <
00 and each stochastic kernel Q on the space (N, %B(N)) in
some neighborhood {Q I[Q-Pl, < ¢} has a unique
invariant measure ¢ = w(Q) and |lm-pull, — 0 as
IQ - Pll, — 0 in this neighborhood.

2.2.3. Strong Stability of M/M /1 System after Perturbation
of the Arrival Flow

(a) Description of the Models. Let us consider a
G/M/1(FIFO,0) system where interarrival times are
independently distributed with general distribution G(¢) and
service times are distributed with Ey(t) (exponential with
parameter y).

Let X, be the number of customers left behind in the
system by the nth departure. It is easy to prove that X, forms
a Markov chain [2] with a transition operator P* = (Pi;f),-) 200
where

. oo 1
xe(yr)" G (), if1<j<ivl,

*

&
1l

if j =0,

S
k=0

L 0, otherwise.

(6)

Consider also an M/M/1(FIFO,00) system, which has
Poisson arrivals with parameter A and the same distribution
of the service times as the preceding system. It is known that
X,, (the number of customers left behind in the system by
the nth departure) forms a Markov chain with a transition
operator P = (B;); jo, where

MW
di+17j:m, ifl1<j<i+l,
P.. = 1 i y i (7)
1] 1- d:(—), 1f]:0’
kz:(:) k yp+A
0, otherwise.

Suppose that the arrival flow of the G/M/1 system is close to
the Poisson one. This proximity is then characterized by the
metric

w=w(GE) = [ " lo-E @ = "lg-el® @),
®)
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where |a] is the variation of the measure a and g and e, are
the respective density functions of the distributions G and E,.
The stationary distributions of the states of X and X, are
defined as follows:

o = lim Pr(X; =k), k=0,12...,

)
me = lim Pr(X, =k), k=0,1,2,...,

(b) Estimation of the Strong Stability

Theorem 2 (see [8]). Suppose that the traffic intensity (A/y) of
the M /M /1 system is smaller than 1. Therefore, for all B such
that1 < B < /A, the imbedded Markov chain X, is v-strongly
stable, after a small perturbation of the interarrival times, for
v(k) = ~.

The margin between the transition operators is given by
[P* - Pl, < (1+ pBw.

In addition, ifw < (1 - p)(y = AB)/(1 + B)(2y — A1 + jB)),
we have the error on the stationary distributions as follows:

lloc = 7l, < (1 + B) 2y = A (1 + B)) (y - V) w)

X((ﬁ—l)(y—wf
(B-1)y+2p

—(2)/—1(1+/3))(1+ﬁ)(y—1/3)w>

= Err,
(10)

where w is defined in (8), « and 7 are defined in (9), and p =
BA/(y =y/B+A)).

Given the error ¢ defined in (1) and the bound in formula
(10) of Theorem 2, it remains to be computed the solution x
of the system (2) and the variation distance w expressed in
(8), which both involve the density function of the unknown
general distribution G. Statistical methods to do so will be
discussed in the following.

3. Different Nonparametric
Considered Estimates

Let X,,..., X, be a sample coming from a random variable
X of density function f and distribution F. The Parzen-
Rosenblatt classical kernel estimate (see [4, 5]) of the density
f(x) for each point x € R is given by

Ja(x) = n;l iK<x;—X]> (1)

n j=1 n

where K is a symmetric density function called kernel and h,,
is the smoothing parameter (or bandwidth).

In practice, the critical step in the kernel density estima-
tion is the choice of the bandwidth h, which controls the
smoothness of the kernel estimate (11). This problem has been
widely studied and many methods have been proposed (see
the review paper [9] and the monograph of Silverman [10]).

Several results are known in the literature when the
density function is defined on the real line R [4, 10]. In the
case of a density function defined on a bounded support, the
boundary effects are present since there is a bias near the
border [3, 6,10]. This problem is due to usage of a fixed kernel
which assigns a weight outside the support when smoothing
is carried out near the boundary. To resolve this problem,
many recent methods have been elaborated.

Schuster [6] suggests creating the mirror image of the
data in the other side of the boundary and then applying the
estimator (11) for the set of the initial data and their reflection.
f(x) is then estimated, for x > 0, as follows:

7o) = n;ﬂi[K<x;Xj>+K<x;Xj>:|. (12)

j=1 n n

Another simple idea to avoid the problem of boundary effects
is the use of a flexible kernel, which never assigns a weight
out of the support of the density function and which corrects
automatically and implicitly the boundary effects. We can cite
the asymmetric kernels [3] given by the following form:

fo () = %ZK (x,b)(X,), (13)
i=1

where b is the bandwidth and the asymmetric kernel K can
be taken as a Gamma density K with parameters (x/b+1,b)
given by

§x/bgtlb

X
KG<E+1’b> (t): m (14)

4. Numerical Examples: Simulation

Recall that our object is the numerical evaluation of the
approximation error between the stationary distributions of
G/M/1 and M/M/1 systems, when the density function of
the general arrival law G in the G/M/1 system is unknown
and must be estimated by nonparametric methods. In this
section, we focus on developing algorithms that take into
account these nonparametric methods and which are adapted
to the case of the two norms mentioned in Section 2. Indeed,
to precise the proximity error between the two systems
according to the L, norm (resp., to the weight norm), we
give Algorithm 1 (resp., Algorithm 2; see [11] for the general
steps), detailed in Section 4.1 below. Numerical illustrative
examples based on simulation under Matlab 7.1 environment
are presented in Section 4.2.
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(1) Begin

(4) For i going from 1to n do
m — (1-p)p’s
a; — (1 -x)x%
g — Im; — s
End for;

& «— max|m; — o;;
i=ln

(6) End.

(2) Introduce the sample size n and the traffic intensity p of the M/M/1 system;
(3) Determine the solution x of the system (2);

(5) Computation of the proximity error:

ALGORITHM I: Approximation error with L, norm.

(0) Begin
theoretical density g(x);

in general g, (x);

w — “g;(x) — e, (x)| dx;

Y

(1) Generate a sample of size n of general probability distribution G with
(2) Estimate the theoretical density g(x) by a nonparametric density noted

(3) Introduce the mean service rate y of the G/M/1 system;
(4) Determine the mean arrival rate A of the G/M/1 system: A «—

(5) Verify the stability: if A/y > 1 then “the system is not stable” go to (9);
else {* the system is v-strongly stable for 1 < 8 < y/A*} go to (6);
(6) Determine the proximity of g, (x) and ¢, (x) = e

(7) Determine the approximation domain (f,;, < 8 < B of the system:

1
_[ xg:(x)dx ’

ﬁmin<—min<ﬁ, l<f<>-andw<

Y

By+A)-y-2A8")(y-21B) >
A (1+B)(2y-2(1+B)(BA+y)-7) )

[Smax<—max<ﬁ, l<fB<=andw<

else {* the approximation is valid *} go to (8);

By+A)-y-2A8")(y-21p) >
A (1+B)(2y-2(1+B)(BA+y)-7) )

if (Buin = Bumax) then “the proximity is not sufficient, go to (9);

(8) Determine the minimal error Err on the stationary distribution:

(1+B)2y-A(1+p)(y-Nw

Err «— min(
(9) End.

(B=D=AB((B- Dy +AB) = 2y = A1 + B + B)y - AB)w

> ﬁmin < ﬁ < ﬁmax>;

ALGORITHM 2: Approximation error with the weight norm.

4.1. Algorithms. See Algorithms1and 2.

4.2. Numerical Examples

4.2.1. Approximation Error with L, Norm

Example 1. We consider the following four cases.

First Case. We consider a G/M/1 system such that the density
function of the general law G is given by

1 . .
—e ™ +e?, if x>0

g(x) =12 (15)
0, otherwise.

By generating a sample coming from the general law G with
the same density g(x) defined above, we use the kernel
density method to estimate the theoretical density g(x) by
using the different estimators given in the three following
cases.

Second Case. We use the kernel estimate g, (x) defined in (11).
Third Case. We use the kernel estimate g, (x) defined in (12).

Fourth Case. We use the kernel estimate gy (x) defined in (13)
with the Gamma kernel given in (14).

For the last three cases, we take the sample size n = 200
and the number of simulations R = 100. In all the cases, we
introduce the service mean time: y = 10.
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TABLE 1: Proximity error ¢ with different estimates.

9(x) 9n(x) Gn(%) 9p(x)
x 0.1475 0.0668 0.1223 0.1364
€ 0.0142 0.0665 0.0220 0.0170

We first determine the interarrival mean rate A =
1/ _[xg(x)dx. We get some performance measures of the
system:

(i) interarrival mean rate: A = 4/3;

(ii) traffic intensity: p = 2/15.

For calculation of the proximity error of the G/M/1 and
M/M]1 systems, defined in (1), we use Algorithm 1. We
obtain the results of Table 1.

Discussion. We note in Table 1 that the approximation errors
found by the kernel method considering the correction of
boundary effects (¢ = 0.0220 in case of mirror image estimate
and ¢ = 0.0170 in case of asymmetric Gamma kernel
estimate) are better than the one found by the classical kernel
method without taking into consideration the correction of
boundary effects (¢ = 0.0665). The kernel density method is
so0 a good tool for the numerical evaluation of the proximity
of the stationary distributions of two systems to approximate,
in order to have an idea of the proximity of the characteristics
of these systems and the possibility of substituting ones by
others.

Remark 3. In most of the cases the G/M/1 model is used
for the calculation of distributions of waiting times. It can
be solved numerically, by solving (2). The probability density
function (PDF) of the waiting time in the M/M/1 system is
given by (see [12])

W) =1-pe?P' t>o. (16)

The same formula is valid to determine the PDF of the waiting
time in the G/M/1 system, with replacing p by x (x is the
unique solution of system (2)).

Using results of Tablel together with (16), we may
compare the resulting distributions of waiting times (which
is the most common goal of the model) given by solving the
M/M/1 queue. For the G/M/1 system, we use the theoretical
density g(t) and its different estimates (g,,(t), g,,(t), G, (t)). An
illustration is given in Figure 1.

Note that according to Figure 1, curves of waiting times
distributions for the G/M/1 system obtained using the
theoretical density g(t) and its estimates g,(t) and g,(t) are
close to that of the waiting times distribution for the M/M/1
system, contrary to the curve of the waiting times distribution
for the G/M/1 system obtained using the classical kernel
estimate g, (t) which is far away from that of the waiting times
distribution for the M/M/1 system. Once more, this is due to
the boundary effects caused by using a symmetric fixed kernel
estimate.

0.975

0.95

0.925

W(t)

09} 44

0.875 [/,

0 005 01 015 02 025 03 035 04 045 05
t

— e ) G ()
--- g0 (0
- gn(t)

FIGURE I: Comparison of waiting times distributions of M/M/1 and
G/M]/1 systems.

4.2.2. Approximation Error with the Weight Norm. To realize
this work, we use Algorithm 2. The Epanechnikov kernel
[10] is used throughout for estimators involving symmetric
kernels. The bandwidth h,, is chosen to minimize the criterion
of the “least squares cross-validation” [10]. The smoothing
parameters b and k are chosen according to a bandwidth
selection method which leads to an asymptotically optimal
window in the sense of minimizing L, distance [13].

Example 2. We generate samples of size n = 50 issued from
different laws. We take the number of simulations R = 100.
For each case of law, we replace the nonparametric density
g, (t) (defined in Algorithm 2) by the density function g,,(¢)
found by applying the Parzen-Rosenblatt classical kernel
estimate defined in (11) to estimate the theoretical density g(t)
of each sample. Using Algorithm 2, we obtain the results of
Table 2.

Discussion. First, notice that according to Table 2, it seems
that the proposed method approximates certain values
with some differences, for instance, the Exp(1) with the
Exp(0.919). This may be explained by the error done when
replacing the theoretical density g(x) by the nonparametric
classical kernel estimate g,,(x) in the formula used to compute
the interarrival mean rate A; that is, A = I/ng(x)dx.
Add to this the errors committed when using approximative
numerical methods in the programming process (e.g., the
trapezes method used for computing the integral in the above
formula).

Note also that according to Table 2, the application of
the Parzen-Rosenblatt classical kernel estimate (11) for the
approximation of the G/M/1 system by the M/M/1 one
when using the strong stability method does not allow us to
determine the error on the stationary distributions between
the two systems. This is due to the importance of the value
of the variation distance w (e.g., w = 0.2444 for Exp(1)
and w = 0.3502 for Weibull(2,0.5,0)). Therefore, the kernel
density method applied for the study of the strong stability
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TABLE 2: w and Err measures with different samples.

Exp(1) Weibull(2, 0.5, 0) Gamma(l, 3)

y =10 y =10 y=2
Inter-arrival mean time A 0.9190 1.8244 0.2750
Traffic intensity p of the system 0.0919 < 1 0.1824 < 1 0.1375<1
Stability domain 1< f<10.8811 1 < f3<54814 1< fB<72740
Variation w 0.2444 0.3502 0.1615

Err

FIGURE 2: Error Err in function of 3 (a) with the theoretical density g(x) and (b) with Gamma kernel estimate g, (x).

TABLE 3: w and Err measures with different estimates.

g(x) 9n(X) u(x) (%)
Variation distance w 0.0711 0.2104 0.0895 0.0792
Error Err 0.21 0.35 0.26

of the queueing systems (e.g., the M/M/1 system) does not
precise the proximity error of the laws of the two systems
(real and ideal) but affirms and reinforces the order of the
importance of the smallness of the perturbation done in the
study of the strong stability of the systems.

Example 3. Following the previous example, the classical
kernel estimate (Parzen-Rosenblatt estimate) has shown its
insufficiency for determining the approximation error on the
stationary distributions of the corresponding systems. It is
why we consider again in this example the study of this prob-
lem by using the same hyperexponential law defined in (15)
and by applying the classical kernel estimate and the other
boundary correction techniques for an eventual comparison.
We follow the same process used in the simulation study in
Section 4.2.1. We use again Algorithm 2 and we list in Table 3
the variation distance w and the approximation error Err
on the stationary distributions for the different estimates.
Figure 2 describes the evolution of the error Err in function

of 5.

Discussion. We note in Table 3 that the approximation error
on the stationary distributions of the G/M/1 and M/M/1
systems was given when applying the kernel density method
by considering the correction of boundary effects in the case
of using mirror image estimate (Err = 0.35) or in the case of
using the asymmetric Gamma kernel estimate (Err = 0.26).
But when applying the kernel density method without taking

into consideration the correction of boundary effects in the
case of using the Parzen-Rosenblatt classical kernel estimate,
the approximation error (Err) on the stationary distributions
of the quoted systems could not be given.

Notice following Figure 2(a) (resp., Figure 2(b)) that the
error, being important at the start, decreases speedily for
the values of 3 in the neighborhood of the lower bound
(1.07235 < B < 1.3) (resp., 1.08146 < f < 1.31). This
may be explained by the fact that they are at the boundary
of the stability domain (critical region). We notice also that
the error increases speedily in the neighborhood of the upper
bound (1.8 < 8 < 2.2) (resp., 1.9 < 8 < 2.2) (critical region).
In contrast, everywhere else, the error increases reasonably
with the values of 8 (favorable region). Nevertheless, it
would be necessary to consider the minimal error Err which
corresponds in our case to § = 1.3, Err = 0.21 (resp,
B = 131, Err = 0.26). Results obtained by considering
the asymmetric Gamma kernel estimate meet up with those
obtained when using the real theoretical density.

Remark 4. In practice, we are often more interested in the
deviation between the average characteristics (e.g., the mean
queue length) of the nominal chain and the perturbed one
than in the difference between stationary probabilities. For
this purpose, we give Corollary 5 that allows us to predict
the characteristics deviation of both systems using the results
of Theorem 2 and that for an appropriate choice of the
individual performance measure f.

Corollary 5. Suppose that the assumptions of Theorem 2 hold,
then, for any function f such that | f||, < oo, one has

|nf - 7f| < Err| f],» (17)
where Err is defined in (10).
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TABLE 4: Error on mean waiting times of M/M/1 and G/M/1
systems.

g(x) (%)
B 13 131
Err 0.21 0.26
W, 0.1699 0.2028

Proof. The proof follows from Theorem 2 together with the
fact that for any measure « it holds that |af]| < [lec[|, | f1I, (see
formula (5)). O

Example for the Choice of the Individual Performance
Measure f

Example 4 (case: mean number of the waiting customers in
the system). LetQand Q be the mean numbers of the waiting
customers of the nominal (ideal) system and the perturbed
one, respectively. To predict the deviation |Q — Q|, it suffices
to take the individual performance measure f as follows:

0, if k=0;
f(k)_{k—l, if k>1. (18)

We have || fll, = sup,.o(lf(k)I/v(k)); then, for f(k) defined

in (18), it is easy to show that || f]l, = (1/In(B))p /=P *1;
thus formula (17) can be written as follows:

Inf ~7f]=]|Q~Q| < Err WED = Q. (19)

o

By dividing expression (19) by A and by using Little’s
formulas, we get
’% B B/ _

PIOJ

=1 - s b

(20)

This last expression provides a bound for the deviation
between the mean waiting times of the M/M/1 and G/M/1
systems.

Applying this formula and results of Table 3, we give in
Table 4 some values for the error on the mean waiting times
of the considered systems, using the theoretical density g(x)
defined in (15) and its asymmetric Gamma kernel estimate
gp(x) for the G/M/1 system. We use values of # minimizing
the error on the stationary distributions Err defined in (10).

5. Conclusion

By comparing the results of Tables 1 and 3, we note that the
conclusions converge for the two cases of considered norms
in the sense that the classical kernel method has shortcomings
and boundary correction techniques are more appropriate in
our case study. However, we note that the error Err (according
to weight norm) is quite large compared to the error ¢
(according to L, norm). This is firstly due to the difference
between the two norms. In addition, during the application

of the strong stability method, we add to the error committed
by the nonparametric estimation the error resulting from the
perturbation performed in this case.

Again, following the results of Figurel and Table 4,
the same finding is observed concerning the waiting time
characteristic.

To summarize, the comparative study between the results
obtained by applying the different nonparametric methods to
both considered norms and for some specific characteristics
shows the impact and interest of those that take into account
the correction of boundary effects to determine an approx-
imation error between the considered systems (G/M/1 and
M/M/1).

Systems used in this paper are relatively simple. They
serve more as an illustrative support for a good compre-
hension of the techniques used to solve the posed problem.
It would be interesting to consider the results of this work
for the approximation of more complex systems, such as the
G/G/1 system, risk and inventory models, and networks.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] D. Assani and N. V. Kartashov, “Ergodicity and stability of
Markov chains with respect to operator topology in the space
of transition kernels,” Doklady Akademii Nauk Ukrainskoi SSR,
vol. 11, pp. 3-5, 1983.

[2] N.V.Kartashov, Strong Stable Markov Chains, TBIMC Scientific
Publishers, VSPV, Utrecht, The Netherlands, 1996.

[3] S. X. Chen, “Probability density function estimation using
gamma kernels,” Annals of the Institute of Statistical Mathemat-
ics, vol. 52, no. 3, pp. 471-480, 2000.

[4] E. Parzen, “On estimation of a probability density function and
mode,” Annals of Mathematical Statistics, vol. 33, pp. 1065-1076,
1962.

[5] M. Rosenblatt, “Remarks on some nonparametric estimates of a
density function,” Annals of Mathematical Statistics, vol. 27, pp.
832-837, 1956.

[6] E.E Schuster, “Incorporating support constraints into nonpara-
metric estimators of densities,” Communications in Statistics A:
Theory and Methods, vol. 14, no. 5, pp. 1123-1136, 1985.

[7] R. Pedrono and J. M. Hellary, Recherche Opérationnelle, Her-
man, Paris, France, 1983.

[8] L.Bouallouche and D. Assani, “Measurement and performance
of the strong stability method,” American Mathematical Society,
no. 72, pp. 1-9, 2006.

[9] M. C. Jones, J. S. Marron, and S. J. Sheather, “A brief survey
of bandwidth selection for density estimation,” Journal of the
American Statistical Association, vol. 91, no. 433, pp. 401-407,
1996.

[10] B. W. Silverman, Density Estimation for Statistics and Data
Analysis, Chapman & Hall, London, UK, 1986.

[11] A. Bareche and D. Aissani, “Kernel density in the study of the
strong stability of the M/M/1 queueing system,” Operations
Research Letters, vol. 36, no. 5, pp. 535-538, 2008.



International Journal of Mathematics and Mathematical Sciences

[12] L. Kleinrock, Queueing Systems, vol. 1-2, John Wiley & Sons,
New York, NY, USA, 1976.
(13] P. Hall and M. P. Wand, “Minimizing L, distance in nonpara-

metric density estimation,” Journal of Multivariate Analysis, vol.
26, no. 1, pp. 59-88, 1988.



Advances in

Operations Research

Advances in

Decision SC|ences

Journal of

Applied Mathematics

Journal of
Probability and Statistics

The Scientific
\{\(orld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Journal of

Mathematics

Journal of

Illsmelth alhemaics

Mathematical Problems
in Engineering

Journal of

Function Spaces

Abstract and
Applied Analysis

Stochastic A nalysws

,;,,\K J :1?"
#(ﬁ)}?ﬂ(ﬂﬁf
f. \') :

International Journal of

Differential Equations

ces In

I\/\athemamcal Physics

Discrete Dynamics in
Nature and Society

Journal of

Optimization




